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Problem Statement

• Paired RGB-thermal cameras mounted on drones, rovers or gimbals 
often drift out of alignment due to vibration, zoom and pan/tilt motion. 
Mis-registration degrades fused analytics and operator situational 
awareness. ThermalNet learns to extract, match and geometrically align 
cross-modal key points so that both streams remain pixel-aligned in real 
time, whatever the movement.
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System Overview

• Input: synchronous RGB–thermal frame pair (640 × 480).

• Keypoint Extraction: SuperPoint-style CNN produces {k, d, s} per 
modality.

• Matching: 18-layer SuperGlue GNN computes feature matches and 
confidence masks.

• Homography Estimation: differentiable DLT + Smooth-L1, reprojection 
and sub-pixel consistency losses, robust to NaN/Inf.

• Sub-Pixel Refinement: RAFT optical flow refines matches to <0.5 px 
accuracy, thus quantifying the movement of the matches.

• Scale aware loss applies bilinear interpolation and refines the matches 
by checking them in different scales.

• Output: 3 × 3 homography H that warps the thermal frame onto the RGB 
view; optional overlay of inlier lines.

Results

Contemporary Issues

Data & Training

• Dataset: in-house ThermalHomographyDataset, ≈ 640 × 480 
RGB/thermal pairs + ground-truth H; graceful fallback to identity when 
missing.

• Augmentation: colour-jitter, flips, rotations, Gaussian noise & cosine 
pseudo-thermal synthesis.

• Optimiser: Adam, LR = 1 × 10-4, 100 epochs, mixed-precision AMP; 
training on A100.

• After 100 epochs the network converged to stable loss and produced 
visually consistent alignments in both day and night scenes; green lines 
denote inlier matches linking RGB→thermal features.

• All functional/robustness tests (grayscale conversion, NaN safety, 
inference tensor shapes, overfitting sanity-check, etc.) passed.

Engineering Impact

• Global / Societal: Enables reliable dual-sensor vision for search-and-
rescue, firefighting, wildlife protection and critical-infrastructure 
inspection, even in resource-constrained regions.

• Economic: Removes need for costly mechanical calibration rigs; retrofit 
to existing payloads.

• Environmental: Fewer repeat flights → lower CO₂; supports SDG 13 – 
Climate Action.

• Ethical & Open Science: Fully open-source stack encourages peer review 
and responsible dual-use oversight.

• Privacy: Drone imaging intersects GDPR / KVKK; on-device processing 
avoids raw data uplink.

• Dual-Use: Alignment tech has defense applications → export-control 
compliance required.

Key Technologies

FUTURE WORK

CONCLUSION

• ThermalNet delivers real-time, pixel-level RGB–thermal alignment, 
validated by exhaustive tests, and is ready for pilot deployment on 
mobile platforms.

• Curate additional urban & light-rain scenes to stress-test generalization.

• Add alignment-confidence score and inlier overlay toggle for field 
operators.

• Conduct live-flight trials with partner drone club to uncover edge cases.

• Environmental: Fewer repeat flights → lower CO₂; supports SDG 13 – 
Climate Action.

• Ethical & Open Science: Fully open-source stack encourages peer review 
and responsible dual-use oversight.

Figure 1: Architecture Diagram

Figure 2: Sample matching
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